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Abstract

The stability problem of the GEOS satellite has been solved. A com-

puter simulation indicates lack of stability, a fact that can be attributed

to the lack of bending stiffness of the cables. Whereas small cable bending

stiffness can render the system stable, the first natural frequency of

oscillation of the spacecraft is likely to be very low, so that the cables

can represent a potential problem area.



Introduction

The GEOS satellite (the "simple model") consists of a rigid core, one

pair of radial booms, one pair of cables with tip masses, and two pairs of

axial booms, as shown in Fig. 1. The latter two pairs of booms are not

strictly axial, as they are inclined with respect to the equatorial plane

at angles other than 900. The satellite spins freely in space with constant

angular velocity 0. The interest lies in the stability of motion when the

spacecraft is perturbed slightly from the uniform spin equilibrium state.

The stability of force-free satellites with flexible appendages, such

as that considered here, has been investigated on several previous occasions

(Refs. 1, 2, 3). Such systems are described by both ordinary and partial

differential equations and are referred to as hybrid. The formulation pre-

sented in Refs. 1, 2, 3 is perfectly valid for the GEOS satellite. Hence,

we shall dispense with the details and only outline the method of approach.

It was shown in Refs. 1, 2, 3 that, under certain circumstances, the

Liapunov direct method with the Hamiltonian as a Liapunov functional can

be used to test the stability of hybrid dynamical systems. The main prob-

lem is how to treat continuous elastic members. The Liapunov direct method

has been used widely in conjunction with discrete systems. To test the

stability of an equilibrium point, the testing function must satisfy one

of several stability or instability theorems. If it does, then the testing

function is said to be a Liapunov function and appropriate stability, or

instability, conclusions can be drawn. If it does not, the analysis is

inconclusive. The stability analysis consists of testing the sign proper-

ties of the testing function. The problem in applying the Liapunov direct

method to hybrid systems lies in the difficulty of testing the sign proper-
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ties of the testing functional (as opposed to the testing function). The

author of this report has developed and used three different approaches to

treat the problem of hybrid systems, namely, (1) the method of testing density

functions, (2) the method of integral coordinates, and (3) the assumed

modes method. The method of testing density functions works directly with

the hybrid dynamical system but is quite often unduly restrictive. On the

other hand, the remaining two methods are based on discretization schemes,

which implies that the testing functional is replaced by a testing function.

In particular, the method of integral coordinates involves the definition

of new generalized coordinates representing certain integrals appearing

in the testing functional, as well as the use of Schwarz's inequality for

functions, to eliminate the spatial dependence from the testing functional.

The difficulty in using this method is that the definition of integral

coordinates is not always possible. Moreover, the method generally yields

conservative results. The assumed modes method discretizes the system

by representing the continuous displacements by finite series of space-

dependent admissible functions multiplied by time-dependent generalized

coordinates. Integration over the elastic domains eliminates the spatial

dependence, so that the testing functional reduces also in this case to

a testing function. The main criticisms of the method are the truncation

effect, which generally leads to more conservative stability criteria,

and the amount of labor involved in deriving the criteria.

Another aspect of the stability analysis is the definition of equili-

brium. In certain cases, the equilibrium is one in which not all the

coordinates are zero (see Ref. 4). In such cases, the equilibrium is

referred to as nontrivial, and it is necessary first to solve for the non-

trivial equilibrium and then to expand the testing function about this
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equilibrium. Note that a typical example of nontrivial equilibrium for

flexible spacecraft is that in which the flexible parts are deformed

under centrifugal force.

This report presents a stability investigation of the GEOS satellite

by the assumed modes method. In considering the stability of small motions

about nontrivial equilibrium, it is shown later that if the analysis per-

formed by ignoring the motion of the mass center indicates stability, then

the system remains stable if the motion of the mass center is included.

Derivation of the Testing Functional

Let us define a set of body axes xyz as the principal axes of the body

in nominal undeformed state. We shall refer to these axes as a global

system. In addition, let us define sets of axes xiYiz i (i = 1,2,...,8) such

that xi is directed along the length of the elastic members in undeformed

state and yi and zi are perpendicular to xi. The set of axes xiYizi will

be referred to as a local system. The motion of the spacecraft can be des-

cribed by the rotational coordinates ej(t) (j = 1,2,3) of the global system

xyz and by the elastic displacements vi(xi,t) and wi(xit) (i = 1,2,...,8)

relative to the local system xiYiz i. In general, the displacements of the

elastic members cause the mass center of the spacecraft to move relative

to its nominal position, where the latter is identified as the origin of

xyz. It is shown in Ref. 3, however, that this shift in the position of

the mass center can be ignored without affecting adversely the stability

criteria. Moreover, assuming that the mass center of the spacecraft moves

in a known orbit in space, the kinetic energy of rotation about the mass

center can be written in the matrix form
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T = T wl T K} + 1 mi r u~dm i  (1)
S i=l

where {w} is the column matrix of the angular velocity components and [J] is

the inertia matrix of the deformed body. Moreover,' {K} is the angular mo-

mentum matrix due to elastic velocities alone and {6u} is the matrix of

the elastic velocities relative to xiYizi.

The potential energy is entirely due to elastic deformations and can

be written in the form

V i i 2 i 2 dxi
VEL 2 i l I EIR [ v) + a(7 dx

fo ax ax

+ 2I E P (2 1 dx. (2)2 x i ax ax 11 8 0 i 2i

where Eli and Pxi (i = 1,2,...,8) are bending stiffnesses and axial forces,

respectively. The functions vi(xi,t) and wi(xi,t) are subject to given

boundary conditions. Note that in the case of the members 3 and 4 the

bending stiffness is zero (or nearly zero) and one of the boundary con-

ditions at xi = i depends on the tip mass mi.

Because this is a natural system, the Hamiltonian is simply

H = T + VEL (3)

But the spacecraft is torque-free, so that the angular momentum about the

mass center must be conserved. It is shown in Ref. 1 that the conservation

of the angular momentum can be expressed in the matrix form

[J]{m} + {K} = {(} (4)

where {g} is the matrix of the conserved angular momentum. Introducing
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Eq. (4) into Eq. (3), in conjunction with Eq. (1), the Hamiltonian reduces

to

H T2 + To + VEL (5)

where

T2 2 il im {u T{u} dmi  (6)
i=1m

is a quadratic function of the elastic velocities and

To = {B}T []-{ (7)

depends on the generalized coordinates alone. Moreover, only two of the

angular coordinates ej are present in To. This can be easily explained by

means of the following argument. Assuming that initially the direction of

the angular momentum vector coincides with the inertial axis Z and that its

magnitude is B, then after some perturbation the angular momentum vector can

be written in the matrix form {8} = {0Z}, where { Z} is the column matrix

of the direction cosines between axis Z and axes xyz. These direction

cosines can be expressed in terms of only two angular coordinates.

For the system to be stable in the neighborhood of the equilibrium,

it is necessary that the Hamiltonian be positive definite (see Ref. 1). But

T2 is positive definite by definition, so that H is positive definite if

the functional

K= T0 + VEL (8)

is positive definite. The testing of K for positive definiteness is hindered

by the fact that K is a functional and not a function, as it involves the

continuous variables vi and wi in integral form. We shall circumvent this
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difficulty by using the assumed modes method.

The term To in Eq. (8) involves the motion xc , yc, zc of the mass center.

Generally, these terms complicate the stability analysis enormously without

affecting materially the stability statement. Indeed, it is not difficult

to show that if the system is judged as being stable in the sense of Liapunov

on the basis of an analysis that ignores xc, Yc, and zc, then the same con-

clusion is valid for the actual motion. To this end, let us write

[J] = [3]u - []c (9)

where [J]u is the inertia matrix obtained by ignoring x , Yc, and zc and

22 2

-Xc zc -Yc 2 Yc

Whereas the matrices [J] and [J]u are positive definite, the matrix [J]c

is only positive. From Eq. (9), it follows that for any arbitrary vector

{T} the quadratic forms associated with [J] and [J]u satisfy the inequality

{T[J]{a) < {T[J]{ ()

From Appendix B, however, we conclude that

{B}T [j]-IB} > {B}T[J)] B-1 (12)

Next, let us introduce the functional

K= T EL  (13)
1 2 1l [3JI u{ +VEL

By virtue of inequality (12), we conclude that

K > K (14)
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so that, if K1 is positive definite the system is asymptotically stable.

The preceding statement is true irrespective of the magnitude of x c , Y

and zc, although when they are large the stability criteria derived by

using K1 insteady of K can be very restrictive. In most practical cases, how-

ever, Xc, yc', and zc are one order of magnitude smaller than the elastic

displacements themselves, in which case appreciable simplification of the

stability analysis is achieved by ignoring them, without sacrificing accuracy.

Calculation of Nontrivial (Deformed) Equilibrium

a. Problem formulation

The equilibrium state to be considered is that in which the spacecraft

spins about the symmetry axis with constant angular velocity n, as shown

in Fig. 1. In that state the radial booms remain undeformed, but the axial

booms undergo bending deformations in two perpendicular directions as a

result of the centrifugal forces. The distributed centrifugal forces are

equal to the negative of the distributed mass multiplied by the centripetal

accelerations. Hence, we wish to calculate first the centripetal accelera-

tions. Considering boom i (i = 5,6,7,8), we can write the position vector

of any point on the boom in the form h. + r + ui where hi is the vector

from the satellite center to the point of attachment of the boom, ri is the

vector from the point of attachment to any arbitrary point on the boom, and

u is the corresponding displacement vector. Denoting by i, ji, ki the

unit vector along the local axes xi, yi, zi, the position vectors are as

follows

hi+ri+ui = (hxi+xi-ZcSinaii i+-(hyi+vi)ji + (hZi+Wi-zcCOsa)ki , i=5,6,7,8 (15)

Recognizing that 0 = ok, where k = iisinai + k cosai, the centripetal accelera-
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tions are

a. = ~xx(h + r + uw) {[(h + - z cosa )sinai
- 1 -i 1 = 2 1

-(hxi + xi - z sinai)cosai]cosaii' - (hyi + vi i)j

-[(hzi + i.- Zcosai)sinai - (hxi + xi - ZcSinai)cosai]sinaik i} (16)

Hence, neglecting the relatively small quantities wi, the centrifugal axial

forces become

xi i 2 [hzisinai - (hxi + x.)cos ]cosidxi

= P.n2{ 4(hxi +) 2-(hxi+xi 2]cosai-h zi(-xi)sini}cosai

i = 5,6,7,8 (17)

where pi is the constant mass density. On the other hand, the transverse

distributed forces are

Pyi i= P2(hyi + vi)

Pzi = pi22[(hzi+wi)sinai - (hxi+xi)cosi]sinai i = 5,6,7,8 (18)

The differential equations and the boundary conditions for the

equilibrium deformations vio(xi) and wio(xi) are

d4v dv.io
El io d P dx ) =p , i = 5,6,7,8 (19a)

dx4 dx xidx

vio(O) = Vo(0) = 0 , v!(i) = vio'( i) = 0, i = 5,6,7,8 (19b)

d4wio dw
ElI - (Pi dx) = p  , i = 5,6,7,8 (20a)

w.io(O) = wo!(O) = 0, wo'(ti) = wio'(k i) = 0, i=5,6,7,8 (20b)
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Let the solution of Eqs. (19) have the form

p
Vio(xi) = i .(x.) i = 5,6,7,8 (21)

j=l 1 3 1

where .ij(xi) are the modes of the fixed-base cantilever beam, in which the

first index denotes the beam number and the second the mode number. The

explicit expression of ij(xi) is (see Ref. 6, Sec. 5-10)

¢ij(xi) = Aij[cos Bi . i + cosh B ij.)(sin ijxi - sinh Bijxi)

- (sin Bij i + sinh Bij i)(cos ijxi - cosh Bijxi)] (22)

where the amplitudes Aij are such that the functions ij(xi) are orthonormal,

i.e., they satisfy relations

fi Pi ij(xi) ¢ik(xi)dxi jk (23)

0

where 6jk is the Kronecker delta. Inserting Eqs. (21) and (22) into Eqs. (19),

we conclude that the coefficients aij must satisfy the algebraic equations

P2 i Pxi d xid Pyi ikdxia. i(W dik dxi) = .i

j=l 1 i 1 jk + o 0  yi"

i = 5,6,7,8; k = 1,2,...,p (24)

Similarly, letting the solution of Eqs. (20) be

wio (xi) = E bij .i j (xi), i = 5,6,7,8 (25)

we arrive at the algebraic equations

P 2 i did ki

Sbiji jk +  xi i k dxi) = Pzi i kdxi
j=l o i

i = 5,6,7,8; k = 1,2,...,p (26)
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to be satisfied by the coefficients bij.

Problem Discretization by the Assumed-Modes Method

Next let us transform the functional K1 into a function and, to this

end, let us derive an explicit expression for To. First, we recognize that

the inertia matrix [J]u can be written in the general form

n
[Ju = []ir + 1 [ Ti][ai] (27)

where [J]r is the inertia matrix of the rigid hub and [Ji] is the inertia

matrix of the member i in terms of local coordinates. Its elements are

Jill = Pi[(hyi + Vio + Vil )2 + (hzi + Wio Wil dxi

Ji22 = I Pi[(hxi + xi)2 + (hzi + wi° + Wil)2]dxi

Ji33 = I Pi[(hxi + xi)2 + (hyi + vio + vil)2]dxi

i2 = i2l 1 Pi(hxi + xi)(hyi + vio + Vil)dXi (28)

il3 = Ji31 Pi(hxi + xi)(hzi + Wio + il)dxi

Ji23 = i32 = J Pi(hyi + v + vil)(hzi .+ w + il )dxi

where vio and wio are the equilibrium elastic displacements and vil and wil

are small perturbations. Moreover [zi] is.the matrix of direction cosines

between the local coordinates xiYizi and the global coordinates xyz. It

will prove convenient to separate the various orders of magnitude in [J]u"

To this end, let us write

[3]u = [J]o + [ ] +  (29)

where
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no [ i]TJio[i ]  
(30a)

in which A 0 0
[J]r o = 0 B 0 (30b)

0 0 C

is the inertia matrix of the rigid hub in which A, B, and C are the principal

moments of inertia about x, y, and z, respectively. Note that the above

statement implies that the global axes xyz are principal axes for the space-

craft. Moreover,

(Jill)o = i [(hyi+ vo 2 + +(h Wio) 2]dx i

(Ji22)o = I pi [(hxi + xi)2 + (hzi + wi°)2]dxi

(Ji33)o = I Pi [(hxi + xi)2 + (hyi + vio)2]dx i
(30c)

(Oil2) = (fi21)o = - Pi(hxi + x.i)(hy i + vio)dxi

(Jil3)o = (Ji3l)o = - I pi(hxi + xi)(hzi + wi )dxi

(Ji23)o (i 32)o Pi(hyi. + vio)(hzi + wio)dxi

where vio and wio are given by Eqs. (21) and (25). Recalling Eqs. (23), we

can write

I vio(Xi)dx i  j=1 a fPij (xi)dxi
P ai  i )dx. i

I xio j=l f (Xi)dxi (31)
j=l 

f 1ij

2 ()dx =P P P 2
Pi.v (x. )dx = E E a. .a i x.Pi(x) )dxi E a

j=l k=l ij j=l
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2  P 2
P wio(xi)dxi = bij=l

p

pixi io (xi)dxi = pixi ij(xi)dxi
j=l (31 cont'd.)

ixiW io(Xi)dxi bij Pixij(xi)dxif j=l

p p
Sivio(xi)Wio(Xi)dxi = piaijbikijikdxij=1 k=1

P P
E aijbik ik = i

j=l k=l i

Next, let us write
n (32)

Jl= [ i]T[Ji[i ]  (32)
i=l

and introduce the generalized coordinates

ej = qj(t) , j = 1,2

p+2 2p+2

vil= 1 (t) Wll = Z lj (xl1)j(t)

j=3 )j=)
3

(2i-1l)p+2 2ip+2

S.ij(x.)qj(t) Wil =p j(x)q(t) (33)

Vil j=2(i-l)p+3 1 1j=(2i-i)p+3 1

(2n-1)p+2 2np+2

v (x )q(t) w 1 = nj(x n)q (t)

1 j=2(n-l)p+3 j=(2n-l)p+3

Then, we have
Then, wpe have i(hyi+Vio)ij(x i)dxi  -I pi(hxi+xi)ij(xi)dxi 0

[Ji1 (2i- )p+2 qj(t) - Pi(hxi+Xi) ij(xi)dxi 0 2JPi(hyi+Wio) ij(xi)dxi

j=2(i-l)p+3 L 0 -Jpi(hyi+W io)ij(xi)dxi 2 Pi(hyi+Vi )ij(xi)dxi

2fpi(hzi+W io)ijdxi  0 -IPi(hxi+Xi) ijdxi

+ (t)2ip+2 0 2pi (h +W )ij(xi)dxi - i(hyi +vio) ij(xi)dxi

j=(2i-l)p+3

-fpi(hxi+Xi)>ij(xi)dxi -_pi(hyi+vio)pij(xi)dxi  
0

(34)

so that
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n Tn (2i-l)p+2
[J1l =  s [ i]T[Jil[ i=  s qj(t) iT[Ji]j

i=1 i = j=2(i-1)p+3

2ip+2 t[jiw [

j=(2i-1)p+3 qt)[ (35)

where [Ji j and [Jilj are the corresponding matrices in Eq. (34). Simi-

larly, we can write

n
[J] 2  []T[] i]  (36)

i=l

where

(2i-1)p+2 (2i-1)p+2 jPiij(xi)ik(xi)dxi 0 0

[Ji]2= E E qj(t)qk(t)
j=2(i-l)p+3 k=2(i-1)p+3 0 0 0

0 0 Piij (x.) ik(xi)d

2ip+2 2ip+2 iij(xi)ik(xi)dxi 0 0

+ E E qj(t)qk(t) i
j=(2i-l)p+3 k=(2i-l)p+3 0 iij(xiik(xi 0

0 0 0

0 0 0
(2i-l)p+2 2ip+2

+ qj(t)qk(t) 0 0 I i.ij(xi)i(X i
j=2(i-l)p+3 k=(2i-1)p+3 1

o0 Pi ij(xi)ik(xi)dxi 0

(37)

If we choose the functions ij(xi), fik(xi) and ij(xi), ik(xi) such that

I Pifij(xi)fik(xi)dxi 6 jk

I Pi ij(xi) ik(xi)dxi = jk (38)

I Pi ij(xi)*ik(xi)dxi =ik

13



then

(2i-l)p+2 2 1 0 0 2ip+2 1 0 0
DJi2 E q (t) 0 0 0 + E q (t) 0 1 0

j=2(i-l)p+3 0 0 1 j=(2i-l)p+3 0 0 0

(2i-l)p+2 0 0 0

(i+ E qj(t)qj+p(t) 0 0 (39)
j=2(i-l)p+3 0 1 0

so that
n T[ n (2i-l)p+2 2

[J]2 [iT ] 2[ i] =  11 (t) 2i [Ji1[i ]

i=l i=l j=2(i-1)p+3

2ip+2 2 (2i-l)p+2
E q(t)[ i]T2[Ji][k i] + z qj(t)qJ+p(t)iJi] (40)

j=(2i-l)p+3 j=2(i-1)p+3 2

Note that [J]o can contain static elastic displacements caused by centri-

fugal forces resulting from steady spin, whereas [J]l and [J]2 contain oscil-

lations about the deformed equilibrium. To evaluate [J]l and [J]2 we need

the matrices [ki]. From Fig. 1, we conclude that the matrices of the di-

rection cosines are as follows:

1 0 0 -1 01 0

[tl ] = 0 1 0 , [k2 ] = -1 0
0 0 1 0 0 1

0 1 0 0 -1 0
[k3 -3] 1 0 0 , [4 ]  1 0 0

0 cos a5 sin a5 0 -cos a6 sin a6

[2,5] -1 0 0 [P6] = 1 0 0
0 -sin a5 cos a 0 sin a6 cos a

cos 7  0 sin7 cos 8 0 sin a8

[07] = 0 1 0 , [8 ]  0 -l 0

sin a7 0 cos a7 sin "8 0 cos a8

and note that a5 = a6 and a7 = a8'
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Assuming that [J] 1l and [J]2 are small compared to [J] 0, we can write

the following approximation for the inverse of [J]-1

[j]- 1 = [K] [K]0 + [K] 1 + [K]2  (42)

where the subscripts 0, 1 and 2 once again identify the order of magnitude

of the quantities involved, in which

[K] = [J]-1

[K] 1 = [J]1 1 l[JlJ (43)

[K] 2 = -[J]ol 3]2[d]ol + [a]o1 1 ola 1 Cl1

From Eqs. (35) and (43), we conclude that

n (2i-1)p+2
[K]1 = - [K]o[J]I[K]o = - E2 qj(t) [K]O[zi]TLJi]ji [ji[K]o

i=l j=2(i-l)p+3

2ip+2 T
=(2il)p+ qj(t)[K] [Yi]T[al ijW i][K]o (44)
j=(2i-l)p+3 0 1 Li

Next, let

[Ai]lj = [K]o[i]T[i ]ij [j i

(45)
[Bi]lj = [K]o[i T iwj(45)i

Then

n (2i-1)p+2 2ip+2 1
[K] 1 = - qj(t) [A ilj[K ] + E q (t)[Bi]j[K] o  (46)

i=l j=2(i-l)p+3 j=(2i-l)p+3

Moreover, using Eqs. (40) and (43), we can write

[K]2 = - [K]o[J]2 [K]o + [K]o[J] 1[K]o[J]1[K]o

n (2i-l)p+2 2 ]S- q (t)[K][ii]T 2 I[i][K]°
i j=2(i-1)p+3 2

15



2ip+2 2 T
+ E q.(t)[K] [ [i TJi][i][K]o

j=(2i-l)p+3 0

(2i-I)p+2 i
+ E qj(t)q +p(t)[K]o [zi T 2 i][K]

j=2(i-l)p+3 id

n (2i-1)p+2 2ip+2 
2

+ (2\j= i-E p+ q.(t)[Ai Bj + j(2i:1jp+3 [K]0  (47)

so that, letting

[Ai]2 = [K] [ki]T[Ji vT[i ]

[Bi]2 = [K]o[i Ji] T w[ (48)

[C ]2 = [K]o[ti T i]w[ i

we obtain

n (2i-l)p+2 2 2ip+2 2
[K]2 = - q(t) [Ai 2[K]o + (t) [Bi 2[K]o

2 i= j=2(i-1)p+3 j=(2i-l)p+3 qj

(2i-l)p+2
+ E qj(t)qj+p(t) [Ci] 2[K]oj=2(i-l)p+3

n n (2i-)p+2 (2j-l)p+2
+ E I F E q (t)qm(t)[A ]19[A _ m[K]

i=- j=l ~=2(i-l)p+3 m=2(j-l)p+3 o A] 0

2ip+2 2jp+2
+ E E q2 (t)qm(t) [Bi]1Z[B ]m [K]°k=(2i-l)p+3 m=(2j-l)p+3

(2i-I)p+2 2jp+2
+ E E q (t)qm(t) [A ]19[B ]Im[K]0k=2(i-l)p+3 m=(2j-1)p+3

2ip+2 (2j-l)p+2 [Bi]l[
+ E q (t)qm(t) [B [A miI[K] (49)
t=(2i-I)p+3 m=2(j-l)p+3

Introducing the notation

i[Ri]j = [Ai]lj[K] , [Silj = [Bi]lj[K] 0 (50)

[Ri] 2 = [Ai] 2[K] o  , [Si2 = [Bi]2[K]o , [Ti] 2 = [Ci] 2[K]

16



Eqs. (46) and (49) can be rewritten in the form

n (21i-1)p+2 2ip+2
[K]1 = - qj(t)[Rij qj(t) [Si]1 (51)

i=l j=2(i-l)p+3 j=(2i-1)p+3

and

n (2i-l)p+2 2 2ip+2 2
[K]2 = - q(t) [R ]2 + I q (t) [S ]2i=1 j=2(i-l)p+3 j  j=(2i-l)p+3 3

(2i-l)p+2 [
+ qj(t)q+p(t) [Ti] 2  + small terms (52)

j=2(i-l)p+3

Next, we wish to write the expression for K1. Assuming that the orien-

tation of the global system xyz is obtained from the inertial space XYZ by

the rotations 03 about z, el about x, and e2 about y, then the direction

cosines between axes xyz and Z are as follows: zxZ -= -coseIsine2 PyZ

sinel, PzZ = cosa 1cose 2 . For small angles el and e2 , the column matrix

{Z)} can be approximated by

UZI {Zo + {IZ1l + {kZ}2 (53a)

where, recalling that el = q and e2  q2, we have

{Z o = 0 {Zl 1  ' {Z}2 : 0 (53b)

1 0 - 2(q l+q2)

Recognizing that B = Co, the functional K1 can be approximated by

K1E j2 2 ({Z T[K]o {Z1 + 2{Z) 2 [K]o {PZo

+ 2{PZT[K] {Z}o + {kZo[K]2 Z) + VEL (54)

in which
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' 11[K]o {z}l = (K11)oq 2+ (K22)oq 1 + 2(K12)oqlq2

T 0 2 2

z 2 o z 33 1 2

2{z }T[K]i{ z I O = -2q2 (K13)1 + 2ql (K23)1

n (2i-l)p+2
= -2 E i-l)p+ q(t) [-(Ril3 )jq 2 + (Ri23 )ljql ]  (55)

i=l j=2(i-l)p+3 13)l2 23

2ip+2
+ E qj(t) [-(S i13)1j 2 + (S 23)jql]

j=(2i-l)p+3

{ T[] n (2i-I)p+2 2
U do[K]-2 z o E E q (t)(Ri33)2i=l j=2(i-l)p+3

+ 2ip+2 2 (2i-1)p+2
+i q -p (t)(Si33)2 + q(t)qj+p(t)(Ti33)2j=(2i-1)p+3 j=2(i-l)p+3 J

But, by virtue of the fact that the functions ij and ij satisfy corresponding

eigenvalue problems, the elastic potential energy satisfies the inequality

n (2i-I)p+2 2 2ip+2 2 2
VEL > 1 2 + Aq (56)

EL- i=1 j=2(i-l)p+3 i  J k=(2i-l)p+3

where Aij and Aik are the natural frequencies associated 'with the modes ij

and tik. Replacing VEL in Eq. (54) by the expression on the right side of

inequality (56), the system can be regarded as asymptotically stable if

= lC22 T
2E 2 {qT[H]{q} (57)

is positive definite where [H] is the Hessian matrix given by

(K22)o-(K33)o (K12)o ...... -(Ri23) ... (Si23)lk ......- (R n23)l ..- (Sn23)lm

(K11)o-(K 33)o ...... (Ril3)lj ... (Sil3)k ...... (Rn1 3)1  .. (Snl3)lm

(A0)2  ... o ...... ... 0

symmetric (At k)2 0 ... 0

n2(A* ) o.. O
* (A* )(A*nm

(58)



where
2

)2 ij - (Ri 2

2  j = 2(i-)p+3, ... , (2i-l)p+2
(A, Aik k = (2i-I)p+3, ..., 2ip+2 (59a)
ik 2 2 (Si33 2

(A* )2 n A (Rn)
C2 2 n332
2  n =  2(n-l)p+3, ... , (2n-l)p+2

2 A nm m = (2n-l)p+3, ... , 2in+2 (59b)
(A* (S
nm C2 n33 2

The function K2E is positive definite if the matrix [H], which in turn requires

that all the eigenvalues of [H] be positive. A computer program has been

written for the calculation of [H] and for the evaluation of its eigenvalues.

The program is described in the next section.

Description of the Computer Program

The computer program follows in detail the equations derived for Hessian

matrix. Some explanations of all its subroutines are given below:

1. The standard Gauss-Jordan is used for the inversion of matrices. The

corresponding subroutine is called MINV.

2. Subroutine HSBG reduces an n by n real matrix A to an upper almost

triangular form by a similarity transformation. Each row is reduced in

turn, starting from the last one, by applying right elimination matrix,

and similarity is achieved by also applying the left inverse transforma-

tion. Thus the eigenvalues of A are preserved. Similarity transfor-

mations are using elementary elimination matrices with partial pivoting.

3. Subroutine ATEIG computes the eigenvalues of a real upper almost triangu-

lar matrix (Hessenberg form) using the double QR iteration of Francis
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(Ref. 7). If all the eigenvalues of the matrix are positive, then the

matrix is positive definite.

4. Subroutine GMPRD is used to multiply two general matrices to form a

resultant general matrix.

5. Subroutine GTPRD is used to premultiply a general matrix by the transpose

of another general matrix. The transpose of A is not actually calcu-

lated. Instead, elements of matrix A are taken columnwise rather than

rowwise for postmultiplication by matrix B.

6. DRTMI determines a root of the general nonlinear equation f(x) = 0 in

the range of x from x i up to Xri (xri, Xri given by input) by means of

Mueller's iteration scheme of successive bisection and inverse parabolic

interpolation. The procedure assumes f(x )f(x .) < 0. Convergence

is quadratic if the derivative of f(x) at root is not equal to zero.

All the subroutines described above could be found in the System/360

Scientific Subroutine Package.

The function SIMPS is used to evaluate numerically all the integrals

by n repeated applications of Simpson's rule, where n is given by the NASR

variable in the program. Because all the chosen admissible functions

involve only well-behaved curves, use of Simpson's rule for all the inte-

grations is justified.

Function FCT contains the equation cos Ex cosh Ex + 1 which is the

characteristic equation of the nonrotating cantilever beam.

Function THI is used to calculate the value of an admissible function

for either beam or cable with given amplitude, frequency and arguement.

Function DTHI is the derivative of function THI and function TTHI is

the integral of function THI.

Total moment of inertia [J] and the moment of inertia [Jill and [Ji 2
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for each beam and each cable are calculated numerically by subroutine

NFREQ. One identification variable (ID) indicates that the input data belongs

to either a cable or a beam. A corresponding procedure is used to determine

the coefficients of the admissible functions associated with the nontrivial

equilibrium.

Function DIJ and its entry functions provide some products of the

independent variable x, the admissible functions and their derivatives,

which are all involved in the centrifugal terms appearing in the differen-

tial equation of nontrivial equilibrium.

Finally, all the elements of Hessian matrix are obtained numerically

in the main program and the property of the matrix is tested by solving all

the eigenvalues of the matrix using the QR iteration method.

Numerical Results

The preceding computer program has been used to test the stability of

the GEOS satellite (the "simple model"). The numerical data (per letter

of Dr. Peter Kulla dated 9 May 1974) is as follows:

21 =2 = 2.66m, hxl = hx2 = 0.73m , hyl = hy2 = 0 , h 1 = hz2 =-0.5m

-1
al = a2 = 0 , P1 = P2 = 1.127 kgm-; wl = w2 = 2 Hz ;

£3 = 4 = 20m , hx3 = hx4 = 0.73m , hy3 = hy4 = 0 , hz3 = hz4 = 0.15m

a3 = a4 = 0 ,P3 P4 = 0.03 kgm -  ,m 3 = m4 = O.kg;

£5 = £6 = 3m , hx5 = hx6 = 0.8 sin270 + 0.5 cos270 m , hy5 = hy6 = -0.42m

hz5 = hz6 = 0.8 cos270 - 0.5 sin270 , 0 5 = a6 
= 270 ,' 5 = 6  0.733kgm 1
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5 
= 

6 = 3Hz;

£7 = R8 = 1.5m , hx7 = hx8 = 0.8 sin450 + 0.5 cos 450m , hy7 = hy8 = -0.42m

hz7 = hz8 = 0.8 cos450 - 0.5 sin450 m, a7 = a8 = 450 ' 7 = P8 = 1.132kgm-1

w7 = 8 = 5Hz;

A Ixx + 2 3 3[hz3 + (hx3 + x3) 2]dx 3 + 2m3[h2 3 + (hx3 + 93)3806kgm 2

B = I = 125kgm2

C = Izz + 2 3(hx3 + x32dx3 + 2m3(hx3 + 3)2 = 397.1006kgm2

-l

= 1 rad s-1

First, the nontrivial equilibrium configuration was evaluating by.using

two terms in series (21) and (25). The results are as follows:

a = -0.13710 x 10-2 mkg1 / 2

ai2 = -0.19418 x 10- 4 mkg1/ 2  io -0.18229 x 10 m

bil = -0.36107 x 10-2 mkg1 / 2

-4 1/2 w. () = -0.48396 x 10-2bi2 = -0.22324 x 10- 4 mkg / 2  i

i = 5.6

ail = -0.43397 x 10- 3 mkg 1 / 2

ai2 = -0.61305 x 10
-5 mkg1/2  io i

bil = -0.92787 x 10
-3 mkgl/2

bi2 = -0.74565 x 10
-5 mkg1/2 w0io(i) = -0.14127 x 10 m

i = 7.8

Using the above results, and using two terms in the series (33), a

34 x 34 Hessian matrix was obtained. The matrix failed the test of

positive definiteness, a fact that can be traced to the cables.
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Conclusions

The stability problem associated with a spin-stabilized satellite

similar in configuration to the GEOS satellite has been formulated and

programmed for digital computation. The formulation is capable of

accommodating satellites with a somewhat different configuration than the

GEOS, in the sense that the number of elastic members and their orientation

relative to the spacecraft is arbitrary.

For the given configuration, one eigenvalue was found to be negative,

so that on the basis of the Liapunov direct method the spacecraft cannot

be judged as being stable. By inference, the system can be regarded as

being unstable. This lack of stability can be traced to the fact that the

lowest natural frequency of in-plane vibration of the cables is close to

zero (see Appendix A). This is based on the assumption that the

cables do not possess bending stiffness. In view of the negative stability

statement obtained, a study of the effect of small cable bending stiff-

ness on the spacecraft stability appears warranted. However, even if an

analysis including small cable bending stiffness indicates stability, the

first natural frequency of oscillation of the spacecraft is likely to be

very low, so that the cables can represent a potential problem area.
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Appendix A - Eigenvalue Problems for Rotating Elastic Members

a. Rotating Beam

Let us consider a rotating beam in transverse vibration, as shown in

Fig. 2., The eigenvalue problem is defined by the differential equation

(see Ref. 6)

El d4 1 x d 2 2 d 2

E 4- pQ2 {[(h+) (hx) I A 2p , 0 < x < k (A.1)
dx4 -

where (x) is subject to the boundary conditions

0 and = 0 at x = 0 (A.2)

d2 - 0 and d3  - 0 at x = s (A.3)
dx dx3

There is no closed-form solution of the eigenvalue problem (A.1) - (A.3).

Hence, we wish to obtain an approximate solution. To this end, we use the

Rayleigh-Ritz method and assume a solution in the form of the series

n
4(x) = z arur(x) (A.4)

r=l

where u (x) are comparison functions, namely, functions satisfying all the

boundary conditions of the problem but not the differential equation (otherwise

they would be eigenfunctions). We choose as comparison functions for the ro-

tating bar the eigenfunctions of the nonrotating cantilever beam, obtained

by setting 6 = 0 in Eq. (A.1). These functions are (see Ref. 6)

ur(x) = Ar[(sinBrL - sinhBrL)(sinBrx - sinhBrx)

+ (cosBrL + coshBrL)(cosrx - cosharx)] , r = 1,2,...,n (A.5)

where the coefficients Ar are arbitrary Br are the eigenvalues of the

problem; they satisfy the characteristic equation
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cosBrL cosh rL + 1 = 0 (A.6)

The functions u r(x) are orthogonal. Moreover, it will prove convenient to

remove the arbitrariness from ur(x) (r = 1,2,...,n) and determine the

coefficients Ar uniquely by normalizing the functions ur(x) so as to satisfy

IO Pur(x)us(x)dx = 6rs r,s = 1,2,...,n (A.7)

where 6rs is the Kronecker delta.

It can be shown that the Rayleigh-Ritz method, in conjunction with the

normalized comparison functions ur(x), lead to the special eigenvalue problem

[k]{a} = A2{al (A.8)

where the matrix [k] is real and symmetric; its elements have the values

I d2 Ur d2 u du du
krs = El k 2  dx2  dx + p 2 0 [(h+k)2 - (h+x)2] d T du  d x

2 1 2 du dus2 6 rs p 2  [(h+) - (h+x)2  ds dx , r,s = 1,2,...,n (A.9): P]rs .d,

in which wr are the natural frequencies of the nonrotating beam. The solution

of the eigenvalue problem (A.8) and (A.9) consists of the eigenvalues A which

are the squares of the estimated natural frequencies of the rotating beam, and

the eigenvectors {a(i)} (i = 1,2,...,n). It follows that the estimated

eigenfunctions are

i(x) 1 ai u r(x) (A.10)r=l

Eigenvalue problems of the type (A.8) and (A.9) must be solved for

radial members such as 1 and 2. For members 5, 6, 7, and 8 the eigenvalue prob-

lem must be modified to account for the inclination of the bar and the resulting

transverse loads.
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b. Rotating cable with tip mass

The eigenvalue problem for a rotating cable is similar to that of the

rotating beam shown in Fig. 2, except that the bending stiffness is equal to

zero. In addition, we are interested in the case in which the cable has a

tip mass m. The corresponding eigenvalue problem is defined by the differential

equation

02 <-,{ p[(h+t)2 - (h+x)2] + m(h+4) A2p , O < x < p (A.11)

where 4(x) is subject to the boundary conditions

= 0 at x = 0 (A.12)

-m(h+) 2  + mA2 = 0 at x = (A.13)

The eigenvalue problem (A.11) - (A.13) has no closed-form solution either.

The eigenvalue problem of the rotating string with no tip mass and with h = 0,

however, is satisfied by the Legendre functions. The Legendre functions of odd

degree can be used as admissible functions for the eigenvalue problem (A.11) -

(A.13) as they solve a similar problem and satisfy the boundary condition at

x = 0. Note that admissible functions need satisfy only the geometric boundary

conditions of the problem. Hence, let us assume an approximate solution in

the form

n
(x) = z ar P2r-l() (A.14)

r=l

where

P1(x) =

P3(x) = 12P3(x) = [ - (A.15)

P5(x) = [63) 5 -.70(-) + 15

8 k AP,



are known as Legendre polynomials. They possess the orthogonality property

o Pj(x)Pk(x)dx 0 , jk 1,2,... (A.16)

and they satisfy the relation

0 P (x)dx = 2j+ j = 1,2,... (A.17)

The Rayleigh-Ritz method leads to the eigenvalue problem

[k]{a} = A2 [m]{a (A.18)

where the matrices [k] and [m] are real and symmetric. Their elements are

ks 2f{l p[(h+) 2 - (h+x)2] + m(h+)}P2rl(x)P2s_(x)dx

r,s = 1,2,...,n (A.19)

and

mrs :JO P 2 r-1 (X)P 2 s-1 + mP2r-1(P2sl(

2(2r-)+ rs 2r-1()P2s-1 () (A.20)

The solution of the eigenvalue problem (A.18) - (A.20) consists of the

eigenvalues A which are the squares of the estimated natural frequencies of

the rotating string with a tip mass, and the eigenvectors {a(i )} ( = 1,2,...,n)

It follows that the estimated eigenfunctions are

ii(x) a(i)r-l(x) (A.21)
r= 1 

r

The eigenvalue problem (A.18) - (A.20) must be solved for member 3,

which yields automatically the solution also for member 4.
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Appendix B - Theorems on Inequalities for Quadratic Forms

Theorem. Given two matrices A and B which are symmetric and positive
definite over real number field R. If xTAx > xTBx for any vector x over

R, then xTA-1x < xTB-1x.

Proof: Because A is symmetric, there is an orthonormal matrix U such that

A-1/2 = UX-1/ 2uT (B.1)

where X is a diagonal matrix with its elements equal to the eigenvalue of

the matrix A. The effect of the operation

C = A-1/2BA-1/2 (B.2)

is to transform the symmetric and positive definite matrix B into a matrix

C which is also symmetric and positive definite, namely,

cT = (A-1/ 2BA-1/ 2)T = A-1/ 2BTA-1/ 2 = A-1/2BA-1/2 = C (B.3)

Similarly, there exists an orthonormal matrix V such that

VTCV = vTA-1/ 2BA-/ 2V = (B.4)

where p is a diagonal matrix.

Introducing the linear transformation

p = VTAl/ 2x (B.5)

into the inequality xTAx > xTBx, we obtain

pTVTA-1/ 2AA-1/ 2Vp > pTVTA-1/ 2BA-1/2Vp (B.6)

which reduces to

SIp T p (B.7)
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where I is the identity matrix. Because A and B are positive definite, all

the elements of the diagonal matrix p are positive. It follows from

inequality (8.7) that

pTl p -< T -1 (B.8)

Moreover, recalling inequalities (B.6) and (B.7), it follows that

pTVTA1/ 2A-1A1/ 2Vp < pTvTA1/ 2B-IA1/ 2Vp (B.9)

Next, let

y = A1 /2Vp = Al/ 2 VVTAl/2x = Ax (B.10)

so that inequality (B.9) reduces to

yTA-ly < yTB-ly (B.11)

Because A is symmetric and positive definite, we can show that A can be

regarded as a linear transformation mapping the linear space into itself.

This concludes the proof that xTA-lx < xTB-x.

Corollary. Given two matrices A and B which are symmetric and positive

definite over real number field R. Then xTAx > xTBx for any vector x over

R if and only if every eigenvalue i (i = l,...,n) of A-1B is such that

1 > i > 0.

Consider the series

I + A-1B + (A-1B) 2 + ... + (A-B) m + ... (B.12)

For convergence it is clearly necessary that lim (A-lB)m 0. This

condition is also sufficient, for if lim (A-1B)m 0 if follows that Irvl < 1,
m+_-

and therefore I - A-1 B does not vanish and (I-A-1 B)-1 exists. But

[I + A-1B + (A-B) 2 + ... + (A-B)m](I - A-B1 ) = I - (A-lB)m+l (B.13)
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so that postmultiplication of Eq. (B.13) by (I - A-lB) -1 yields

I + A-1 B + (A-1 B) 2 + ... + (A-B)m = (I - A-1B)-1 - (A-B)m+(I - A-1 B) -1  (B.14)

As m -*, Eq. (B.14) reduces to

I + A-1 B + (A- )2 + ... + (A- B)m + ... = (I - A-1B)-1  (B.15)

But postmultiplication of Eq. (B.15) by A-1 gives

A-1 + A-1 BA-1 + (A- 1 B)2A-1 + ... + (A- B)mA - 1 + ... = (I - A-1B)-1A-1

[A(I - A-1 B) -1  (B.16)

Hence,

A-1 + A-1 BA-1 + (A-1B) 2A-1 + ... + (A-1B)mA- + ... = (A - B)- (B.17)

so that if two symmetric and positive definite matrices A and B satisfy the

inequality xTAx > xTBx for any vector x over R, then the series expansion

(B.17) is valid and convergent.
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